Predominant role of vasoconstrictors over dilatators derived from arachidonic acid in hypoxic pulmonary vasoconstriction.
نویسندگان
چکیده
Prostanoids derived from arachidonic acid (AA) have been shown to play a permissive role in the regulation of vascular tone and wall tension. Conventionally, epoxyeicosatrienoic acids (EETs) and prostacyclin have been considered as dilatators, whereas thromboxane (TX) and hydroxyeicosatetraenoic acid (HETE) were considered as vasoconstrictors. However, the role of these prostanoids in the mediation of acute hypoxic pulmonary vasoconstriction is not yet clearly understood. In the present study, the role of prostanoids in the acute hypoxic response in rat isolated intrapulmonary arteries (IPAs) was investigated. Exogenous AA directly caused vasoconstriction, but exerted a significant inhibition on hypoxic vasoconstriction. The vasoconstriction by AA was mediated by the endothelium. AA metabolites from lipoxygenase (LOX) had no effect on vascular tone or hypoxic vasoconstriction. Consistent results from the blockage of cytochrome P450 (CYP) or CYP epoxide hydrolase showed that HETE contributed to endothelium‑independent hypoxic vasoconstriction. EET via epoxygenase exerted no effect on 80 mM KPSS‑induced vessel contraction or hypoxic vasoconstriction. In addition, prostacyclin also failed to inhibit hypoxic pulmonary vasoconstriction (HPV). However, blockage of thromboxane A2/prostanoid (TP) receptors almost eliminated hypoxic vasoconstriction, suggesting the primary role of TP receptors in the regulation of the hypoxic response in rat IPAs. In conclusion, the current data indicate the predominant role of vasoconstrictors instead of dilatators in mediating HPV. These data also highlight a pivotal role for voltage‑independent Ca2+ entry in pulmonary hypoxic response and suggest that modulation of these channels by prostanoids underlies their regulatory mechanisms.
منابع مشابه
Potential role of arachidonic acid metabolites in hypoxic pulmonary vasoconstriction.
Hypoxic vasoconstriction is important for lung ventilation/perfusion matching. The mechanism of hypoxic vasoconstriction remains elusive. Arachidonic acid is released from hypoxic tissues; possibly vasoconstricting arachidonate metabolites are involved in hypoxic pulmonary vasoconstriction. Data are presented that consider (a) lipoxygenase product(s) as "local," which could be involved in the h...
متن کاملThe Interaction between Trolox and 4,4’-diisothiocyanatostilbene-2,2’-disulfonic Acid on Hypoxic Pulmonary Vasoconstriction in the Isolated Rabbit Lung
Background: The mechanism of hypoxic pulmonary vasoconstriction (HPV) is still debatable. It has been proposed that reactive oxygen species (ROS) might be involved in HPV. However, there is no special transporter for superoxide anion in the cell membrane and it may release from the cells via anion exchanger. Therefore, the aim of this study was to investigate the interaction of ROS and anion ex...
متن کاملSustained Hypoxic Pulmonary Vasoconstriction in the Isolated Perfused Rat Lung: Effect of α1-adrenergic Receptor Agonist
Background: Alveolar hypoxia induces monophasic pulmonary vasoconstriction in vivo, biphasic vasoconstriction in the isolated pulmonary artery, and controversial responses in the isolated perfused lung. Pulmonary vascular responses to sustained alveolar hypoxia have not been addressed in the isolated perfused rat lung. In this study, we investigated the effect of sustained hypoxic ventilation o...
متن کاملThe Role of Anion Exchanger on Pulmonary Vascular Response to Sustained Alveolar Hypoxia in the Isolated Perfused Rabbit Lung
Background: Some respiratory diseases may induce alveolar hypoxia thereby hypoxic pulmonary vasoconstriction (HPV). However, the mechanisms of this physiologic phenomenon are not fully understood. This study was the first to investigate the role of anion exchanger in sustained HPV.Methods: Experiments were performed in the isolated perfused rabbit lung. After preparation, the lungs were divided...
متن کاملRole of arachidonic acid-derived metabolites in the control of pulmonary arterial pressure and hypoxic pulmonary vasoconstriction in rats.
BACKGROUND The roles of arachidonic acid (AA) metabolites in hypoxia-induced pulmonary vasoconstriction (HPV), a critical physiological mechanism that prevents ventilation/perfusion mismatch, are still incompletely understood. METHODS Pulmonary arterial pressure was measured in ventilated/perfused rat lungs. Isometric tones of rat intralobar pulmonary arteries were also measured, using a myog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular medicine reports
دوره 8 4 شماره
صفحات -
تاریخ انتشار 2013